from openai import OpenAI
import json
client = OpenAI(
    base_url="https://api.ppinfra.com/openai",
    api_key="<Your API Key>",
)
model = "deepseek/deepseek-v3"
# 示例函数,用于模拟获取天气数据。
def get_weather(location):
    """获取指定地点的当前天气"""
    print("调用 get_weather 函数,位置: ", location)
    # 在实际应用中,您需要在这里调用外部天气 API。
    # 这是一个简化示例,返回硬编码数据。
    return json.dumps({"位置": location, "温度": "20 摄氏度"})
tools = [
    {
        "type": "function",
        "function": {
            "name": "get_weather",
            "description": "获取一个地点的天气,用户需要首先提供地点",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "城市信息, 例如:上海",
                    }
                },
                "required": ["location"]
            },
        }
    },
]
messages = [
    {
        "role": "user",
        "content": "上海的天气怎么样?"
    }
]
# 发送请求并打印响应
response = client.chat.completions.create(
    model=model,
    messages=messages,
    tools=tools,
)
# 请在生产环境中检查响应是否包含工具调用
tool_call = response.choices[0].message.tool_calls[0]
print(tool_call.model_dump())
# 确保工具调用已从上一步定义
if tool_call:
    # 扩展对话历史记录,添加助手工具调用消息
    messages.append(response.choices[0].message)
    function_name = tool_call.function.name
    if function_name == "get_weather":
        function_args = json.loads(tool_call.function.arguments)
        # 执行函数并获取响应
        function_response = get_weather(
            location=function_args.get("location"))
        # 将函数响应添加到消息中
        messages.append(
            {
                "tool_call_id": tool_call.id,
                "role": "tool",
                "content": function_response,
            }
        )
    # 从模型获取最终响应,包含函数结果
    answer_response = client.chat.completions.create(
        model=model,
        messages=messages,
        # 注意:不要在此处包含 tools 参数
    )
    print(answer_response.choices[0].message)